
	

	

Smart Contract Security Audit Report

A7A5 Token Audit

	

Security Audit Report
A7A5	

Page 2 of 17

1. Contents

1.	 Contents ... 2	
2.	 General Information ... 3	

2.1.	 Introduction ... 3	
2.2.	 Scope of Work .. 3	
2.3.	 Threat Model .. 3	
2.4.	 Weakness Scoring .. 4	
2.5.	 Disclaimer ... 4	

3.	 Summary ... 5	
3.1.	 Suggestions .. 5	

4.	 General Recommendations .. 6	
4.1.	 Security Process Improvement .. 6	

5.	 Findings ... 7	
5.1.	 Inconsistent approves .. 7	
5.2.	 Unintended token burning ... 9	
5.3.	 Incorrect event value during transfer .. 9	
5.4.	 Lack of zero checks ... 10	
5.5.	 Lack of event emitting .. 11	
5.6.	 Rounding issues in token transfer .. 12	
5.7.	 Fees can be bypassed ... 14	
5.8.	 Redundant restriction in approve .. 15	
5.9.	 Typo in the revert message .. 15	

6.	 Appendix ... 17	
6.1.	 About us ... 17	

	

Security Audit Report
A7A5	

Page 3 of 17

2. General Information

This report contains information about the results of the security audit of the A7A5 (hereafter

referred to as “Customer”) smart contracts, conducted by Decurity in the period from 21/01/2025 to

23/01/2025.

2.1. Introduction

Tasks solved during the work are:

• Review the protocol design and the usage of 3rd party dependencies,

• Audit the contracts implementation,

• Develop the recommendations and suggestions to improve the security of the contracts.

2.2. Scope of Work

The audit scope included the contracts in the following repository: https://github.com/a7a5-

defi/a7a5. Initial review was done for the commit 3bfbe2.

The following contracts have been tested:

• contracts/A7A5.sol

2.3. Threat Model

The assessment presumes actions of an intruder who might have capabilities of any role (an

external user, token owner, token service owner, a contract). The centralization risks have not been

considered upon the request of the Customer.

The main possible threat actors are:

• User,

• Protocol owner,

• Liquidity Token owner/contract.

The table below contains sample attacks that malicious attackers might carry out.

https://decurity.io/
https://github.com/a7a5-defi/a7a5
https://github.com/a7a5-defi/a7a5
https://github.com/a7a5-defi/a7a5/commit/3bfbe29443a9fb8093f8170099e880d35a345acd

	

Security Audit Report
A7A5	

Page 4 of 17

Table. Theoretically possible attacks

Attack Actor

Contract code or data hijacking

Deploying a malicious contract or submitting malicious data

Contract owner

Token owner

Financial fraud

A malicious manipulation of the business logic and balances, such as a re-

entrancy attack or a flash loan attack

Anyone

Attacks on implementation

Exploiting the weaknesses in the compiler or the runtime of the smart

contracts

Anyone

2.4. Weakness Scoring

An expert evaluation scores the findings in this report, an impact of each vulnerability is calculated

based on its ease of exploitation (based on the industry practice and our experience) and severity (for the

considered threats).

2.5. Disclaimer

Due to the intrinsic nature of the software and vulnerabilities and the changing threat landscape,

it cannot be generally guaranteed that a certain security property of a program holds.

Therefore, this report is provided “as is” and is not a guarantee that the analyzed system does not

contain any other security weaknesses or vulnerabilities. Furthermore, this report is not an endorsement

of the Customer’s project, nor is it an investment advice.

That being said, Decurity exercises best effort to perform their contractual obligations and follow

the industry methodologies to discover as many weaknesses as possible and maximize the audit coverage

using the limited resources.

	

Security Audit Report
A7A5	

Page 5 of 17

3. Summary

As a result of this work, we have discovered a single medium security issue. The other suggestions

included fixing the low-risk issues and some best practices (see Security Process Improvement). These

vulnerabilities have been addressed and thoroughly re-tested as part of our process.

3.1. Suggestions

The table below contains the discovered issues, their risk level, and their status as of February 3,

2025.

Table. Discovered weaknesses

Issue Contract Risk Level Status

Inconsistent approves contracts/A7A5.sol Medium Fixed

Unintended token burning contracts/A7A5.sol Low Fixed

Incorrect event value during

transfer

contracts/A7A5.sol Low Fixed

Lack of zero checks contracts/A7A5.sol Low Fixed

Lack of event emitting contracts/A7A5.sol Low Fixed

Rounding issues in token

transfer

contracts/A7A5.sol Info Fixed

Fees can be bypassed contracts/A7A5.sol Info Acknowledged

Redundant restriction in

approve

contracts/A7A5.sol Info Fixed

Typo in the revert message contracts/A7A5.sol Info Fixed

	

Security Audit Report
A7A5	

Page 6 of 17

4. General Recommendations

This section contains general recommendations on how to improve overall security level.

The Findings section contains technical recommendations for each discovered issue.

4.1. Security Process Improvement

The following is a brief long-term action plan to mitigate further weaknesses and bring the

product security to a higher level:

• Keep the whitepaper and documentation updated to make it consistent with the

implementation and the intended use cases of the system,

• Perform regular audits for all the new contracts and updates,

• Ensure the secure off-chain storage and processing of the credentials (e.g. the privileged

private keys),

• Launch a public bug bounty campaign for the contracts.

	

Security Audit Report
A7A5	

Page 7 of 17

5. Findings

5.1. Inconsistent approves

Risk Level: Medium

Status: Fixed in the commit f734b1.

Contracts:

• contracts/A7A5.sol

Description:

The transferFrom and transferScaledFrom functions contain inconsistencies in how

allowances are deducted and compared, which could lead to transaction reverts.

The transferFrom Function:

• The function compares the allowance against _value to ensure the spender has

sufficient allowance (require(allowance_ >= _value, "allowance exceeded");).

• However, it deducts scaledAmount (a scaled version of _value) from the allowance

(_allowances[_from][msg.sender] -= scaledAmount;).

• If scaledAmount is greater than _value, the transaction will revert because the

allowance check (require(allowance_ >= _value)) will pass, but the deduction

of scaledAmount will attempt to subtract a larger value than the allowance.

function transferFrom(
 address _from,
 address _to,
 uint256 _value
) public whenNotPaused notBlacklisted(_from) returns (bool) {
 uint256 allowance_ = _allowances[_from][msg.sender];
 require(allowance_ >= _value, "allowance exceeded");

 uint256 scaledAmount = getScaledAmount(_value);
 uint256 fee = (scaledAmount * basisPointsRate) / FEE_PRECISION;
 if (allowance_ < type(uint256).max) {
 _allowances[_from][msg.sender] -= scaledAmount; // @audit should
deduct "value"
 }
 _transferShares(_from, _to, scaledAmount - fee);

https://github.com/a7a5-defi/a7a5/commit/f734b17e9169e96fb9ee46222ae236a79b3f2f8c

	

Security Audit Report
A7A5	

Page 8 of 17

 if (fee > 0) {
 _transferShares(_from, owner, fee);
 emit Transfer(_from, owner, _value);
 }
 emit Transfer(_from, _to, _value);
 return true;
 }

The transferScaledFrom Function:

• The function compares the allowance against liquidityAmount (require(allowance_

>= liquidityAmount, "allowance exceeded");).

• However, it deducts _value from the allowance (_allowances[_from][msg.sender] -

= _value;).

• If _value is greater than liquidityAmount, the transaction will revert because the

allowance check (require(allowance_ >= liquidityAmount)) will pass, but the

deduction of _value will attempt to subtract a larger value than the allowance.

function transferScaledFrom(
 address _from,
 address _to,
 uint256 _value
) public whenNotPaused notBlacklisted(_from) returns (bool) {
 uint256 fee = (_value * basisPointsRate) / FEE_PRECISION;
 uint256 allowance_ = _allowances[_from][msg.sender];
 uint256 liquidityAmount = getLiquidityAmount(_value);
 require(allowance_ >= liquidityAmount, "allowance exceeded");
 if (allowance_ < type(uint256).max) {
 _allowances[_from][msg.sender] -= _value; // @audit should deduct
"liquidityAmount"
 }
 _transferShares(_from, _to, _value - fee);
 if (fee > 0) {
 _transferShares(_from, owner, fee);
 }
 return true;
 }

Remediation:

Consider deducting correct value.

	

Security Audit Report
A7A5	

Page 9 of 17

5.2. Unintended token burning

Risk Level: Low

Status: Fixed in the commit f734b1.

Contracts:

• contracts/A7A5.sol

Description:

The contract logic specifies that only the owner can burn tokens using the burn function.

However, there is a way that allows unauthorized token burning through a combination of front-running

and exploiting the destroyBlackFunds and transfer functions.

1. A user front-runs a destroyBlackFunds transaction to transfer tokens to a blacklisted user.

2. The compliance role calls destroyBlackFunds to burn the tokens held by the blacklisted user.

3. As a result, user’s tokens are burned without the owner’s explicit authorization, bypassing the

restriction in the burn function.

function transfer(
 address _to,
 uint256 _value
) public whenNotPaused notBlacklisted(msg.sender) returns (bool) {
 // @audit should check notBlacklisted(to) (burn)
 uint256 scaledAmount = getScaledAmount(_value);
 uint256 fee = (scaledAmount * basisPointsRate) / FEE_PRECISION;
 _transferShares(msg.sender, _to, scaledAmount - fee);
 if (fee > 0) {
 _transferShares(msg.sender, owner, fee);
 emit Transfer(msg.sender, owner, _value);
 }
 emit Transfer(msg.sender, _to, _value);
 return true;
 }

Remediation:

Consider adding modifiernotBlacklisted(_to) for transfer functions.

5.3. Incorrect event value during transfer

Risk Level: Low

https://github.com/a7a5-defi/a7a5/commit/f734b17e9169e96fb9ee46222ae236a79b3f2f8c

	

Security Audit Report
A7A5	

Page 10 of 17

Status: Fixed in the commit f734b1.

Contracts:

• contracts/A7A5.sol

Description:

The Transfer events emitted in the transfer and transferFrom functions are incorrectly using

_value instead of the actual transferred fee amount in the case of fee deduction. This leads to inaccurate

event data, which can cause confusion for off-chain services or tools relying on event logs.

Remediation:

Corrected code for transfer function:

if (fee > 0) {
 _transferShares(msg.sender, owner, fee);
 emit Transfer(msg.sender, owner, fee); // Emit the correct fee amount
}

Corrected code for transferFrom function:

if (fee > 0) {
 _transferShares(_from, owner, fee);
 emit Transfer(_from, owner, fee); // Emit the correct fee amount
}

5.4. Lack of zero checks

Risk Level: Low

Status: Fixed in the commit f734b1.

Contracts:

• contracts/A7A5.sol

Description:

The code contains multiple instances where zero address checks and validations are missing.

Loss of Control

 If the zero address is assigned to critical roles (e.g., owner, compliance, accountant), the

contract may become unmanageable, as these roles have privileged access to key functions.

https://github.com/a7a5-defi/a7a5/commit/f734b17e9169e96fb9ee46222ae236a79b3f2f8c
https://github.com/a7a5-defi/a7a5/commit/f734b17e9169e96fb9ee46222ae236a79b3f2f8c

	

Security Audit Report
A7A5	

Page 11 of 17

constructor(
 string memory name_,
 string memory symbol_,
 uint8 decimals_,
 address owner_,
 address compliance_,
 address accountant_
) {
 // @audit missing zero checks
 name = name;
 symbol = symbol;
 decimals = decimals;
 owner = owner_;
 compliance = compliance_;
 accountant = accountant_;
 }

Token Blocking

Transferring shares to the zero address could result in tokens being “burned” without

totalSupply changing, which may not be the intended behavior. This could lead to a loss of tokens and

disrupt the token economy.

function _transferShares(
 address _from,
 address _to,
 uint256 _sharesAmount
) internal returns (bool) {
 // @audit no "to" zero check
 require(
 _shares[_from] >= _sharesAmount,
 "not enough shares for transfer"
);
 _shares[_from] -= _sharesAmount;
 _shares[_to] += _sharesAmount;

 return true;
 }

Remediation:

Consider validating that addresses are not equals to zero.

5.5. Lack of event emitting

Risk Level: Low

	

Security Audit Report
A7A5	

Page 12 of 17

Status: Fixed in the commit f734b1.

Contracts:

• contracts/A7A5.sol

Description:

The transferScaled() and transferScaledFrom() functions do not emit an event after

performing a token transfer. In Solidity, it is considered best practice to emit an event whenever a state-

changing action occurs, particularly for token transfers.

Remediation:

To ensure transparency and improve traceability, consider emitting a Transfer event after the

transfer operation within both functions.

5.6. Rounding issues in token transfer

Risk Level: Info

Status: Fixed in the commit f734b1.

Contracts:

• contracts/A7A5.sol

Description:

The transferred shares may be several wei less than intended amount due to rounding down in

integer division. As a result, the recipient may receive a few wei less than expected during token transfers.

 function balanceOf(address account) public view override returns (uint256)
{
 return getLiquidityAmount(_shares[account]);
 }

 function getLiquidityAmount(uint256 shares) public view returns (uint256)
{
 if (_totalSupply == 0) {
 return 0;
 }
 return (shares * _totalLiquidity) / _totalSupply;
 }

https://github.com/a7a5-defi/a7a5/commit/f734b17e9169e96fb9ee46222ae236a79b3f2f8c
https://github.com/a7a5-defi/a7a5/commit/f734b17e9169e96fb9ee46222ae236a79b3f2f8c

	

Security Audit Report
A7A5	

Page 13 of 17

The amount of possible loss will be approximately equals to (x - rate - 1). The detailed

explanation may be found in this issue.

Also after fixing the allowance issue in the transferScaledFrom function, a new vulnerability

arises due to precision loss in the getLiquidityAmount function. This vulnerability could allow an

attacker to steal 1 wei of shares from another user’s balance. Here’s how the issue occurs:

function transferScaledFrom(
 address _from,
 address _to,
 uint256 _value
) public whenNotPaused notBlacklisted(_from) returns (bool) {
 uint256 fee = (_value * basisPointsRate) / FEE_PRECISION;
 uint256 allowance_ = _allowances[_from][msg.sender];
 uint256 liquidityAmount = getLiquidityAmount(_value);
 require(allowance_ >= liquidityAmount, "allowance exceeded");
 if (allowance_ < type(uint256).max) {
- _allowances[_from][msg.sender] -= _value;
+ _allowances[_from][msg.sender] -= liquidityAmount;
 }
 _transferShares(_from, _to, _value - fee); // @audit-issue if
totalLiquidity < totalSupply it is possible to steal 1 wei shares from someone
balance
 if (fee > 0) {
 _transferShares(_from, owner, fee);
 }

 return true;
 }

4. getLiquidityAmount Precision Loss:

– The getLiquidityAmount function calculates the liquidity amount based on the

ratio of _totalLiquidity to _totalSupply.

– If _totalLiquidity < _totalSupply, and the input shares is very small (e.g., 1

wei), the result of (shares * _totalLiquidity) / _totalSupply may round

down to 0 due to integer division.

– This means that for small values of shares, getLiquidityAmount may return 0,

even though shares is non-zero.

5. Exploiting Precision Loss in transferScaledFrom:

https://github.com/lidofinance/core/issues/442

	

Security Audit Report
A7A5	

Page 14 of 17

– The transferScaledFrom function uses getLiquidityAmount to calculate

the liquidityAmount and checks if the allowance is sufficient.

– If getLiquidityAmount returns 0 for a small _value (e.g., 1 wei), the allowance

check (require(allowance_ >= liquidityAmount, "allowance

exceeded");) will pass, even if the actual _value is non-zero.

– The function then deducts liquidityAmount (which is 0) from the allowance,

but transfers _value - fee shares, which could be 1 wei.

Remediation:

Take into account that this issue is present in your code and make a recommendation of querying

token balances before and after every transfer and transferring the difference between them instead.

To fix the second issue consider checking that a _value passed to the transferScaledFrom() is

not equals to zero after converting it to the liquidity amount via getLiquidityAmount().

References:

• https://docs.lido.fi/guides/lido-tokens-integration-guide#1-2-wei-corner-case

5.7. Fees can be bypassed

Risk Level: Info

Status: Acknowledged

Contracts:

• contracts/A7A5.sol

Description:

Fees can be bypassed by transferring in small fragments.

The contract implements a fee mechanism where each transfer is charged a percentage fee based

on the basis points rate. However, due to integer division in the fee calculation, transfers of small amounts

may result in zero fees, allowing users to bypass the fee mechanism entirely.

Consider a transfer of 1000 tokens with a 0.1% fee (10 basis points):

• Single transfer of 1000 tokens:

 Fee = (1000 * 10) / 10000 = 1 token

https://docs.lido.fi/guides/lido-tokens-integration-guide#1-2-wei-corner-case

	

Security Audit Report
A7A5	

Page 15 of 17

• Split into 10 transfers of 100 tokens each:

 Fee per transfer = (100 * 10) / 10000 = 0 tokens (rounds down)

This attack may be useful on Tron blockchain.

Remediation:

Consider adding a minimal fee value.

5.8. Redundant restriction in approve

Risk Level: Info

Status: Fixed in the commit f734b1.

Contracts:

• contracts/A7A5.sol

Description:

In the approve() function, there is a redundant check that ensures msg.sender is not the zero

address (address(0)). This check is unnecessary because msg.sender can never be the zero address.

function approve(address _spender, uint256 _value) public returns (bool) {
 require(msg.sender != address(0), "can't approve by zero address"); //
@audit redundant
 _allowances[msg.sender][_spender] = _value;
 emit Approval(msg.sender, _spender, _value);
 return true;
}

Remediation:

Consider removing the redundant require statement.

5.9. Typo in the revert message

Risk Level: Info

Status: Fixed in the commit f734b1.

Contracts:

• contracts/A7A5.sol

Description:

https://github.com/a7a5-defi/a7a5/commit/f734b17e9169e96fb9ee46222ae236a79b3f2f8c
https://github.com/a7a5-defi/a7a5/commit/f734b17e9169e96fb9ee46222ae236a79b3f2f8c

	

Security Audit Report
A7A5	

Page 16 of 17

In the onlyCompliance modifier, there is a typo in the error message string.

modifier onlyCompliance() {
 require(msg.sender == compliance, "not complience"); // @audit typo
 _;
 }

Remediation:

Consider correcting the error message.

	

Security Audit Report
A7A5	

Page 17 of 17

6. Appendix

6.1. About us

The Decurity team consists of experienced hackers who have been doing application security

assessments and penetration testing for over a decade.

During the recent years, we’ve gained expertise in the blockchain field and have conducted

numerous audits for both centralized and decentralized projects: exchanges, protocols, and blockchain

nodes.

Our efforts have helped to protect hundreds of millions of dollars and make web3 a safer place.

https://decurity.io/

